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Abstract. An adapted spin-wave model has been developed IO explain spin reorientation 
(SR) processes in rare-earth ferromagnetic (or ferrimagnetic) systems with competing axid- 
planaranisotropies. The model involvesonlysecondorder in theeffective spins andsingle- 
ion crystal electric field (CEF) interactions, andseveral resultsot interest have been achieved, 
in particular the temperature dependence of the SR angle 8. The conditions required to have 
an SR transition have been established. Of importance is that the 0 K SR angle 8(0) becomes 
a consequence of the frozen-in uniform zero-point quantum spin fluctuations, and depends 
only on the ratio A = -(O&O,) between the planar and axial second-order ca~strengths.  
A consequence is that the SR temperature Ts, and the 0 K second-order magnetic anisotropy 
free energy, K,(O) sin’ 8(0), become proportional. The angle 8 fluctuates critically for 
T s T,, anditsexponent has beencalculated.@ = l/?,aswellasthedependenceof Ts,with 
A and the exchange strength. At low temperatures the dependence of sinz fJ becomes of 
7” Bloch-like type. A comparison of these results with current experimental findings in 
hardmagneticintermetallics, such as (RE:RE,.,),F~,~B and R E : R E , J ~ ~ ,  has been made. 
The effective anisotropy constant K,(O) and the magnon energy at the Brillouin zone 
boundary for some of the above series of intermetallics have been obtained from previous 
experiments, the K,(O) values being in good agreement with theory. 

1. Introduction 

In previous papers (Algarabel ef uf 1988, Ibarra et al 1988a, 1989a, b, del Moral et a1 
1989,1990, Moze eral1990a, b) it was shown that spin reorientation (SR) transitions are 
phase ones occurring between a high-temperature magnetically axial (A) structure and 
a low-temperature one, where the ferromagnetic (or ferrimagnetic) system becomes 
conical (C) or planar (P), the transition occurring at a critical temperature TsR. The 
drivingmechanism is believed to be the magnetocrystalline anisotropy energy, in systems 
where there exist two competing anisotropies, of A and P character respectively (Cullen 
and Callen 1985). In fact, such transitions occur most widely in rare-earth (RE) mag- 
netically hard intermetallics, where we alloy two RE ions with crystal electric field (CEF) 
Stevens second-order coefficients a, of opposite signs. Examples of such systems are the 
(Er,RE,-,)2Fe14B (RE = Nd, Dy, Ho) and RE:RE,-,CO~ intermetallics, which present 
a crystallographic axial structure (tetragonal or hexagonal, respectively). It was shown 
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(del Moral er a1 1989, 1990) that the SR angle 8, i.e. the angle formed by the average 
magnetization with the c axis, is the relevant order parameter. 

In experiments (see all the references above) performed over a wide range of the 
mentioned pseudobinary and pseudoternary intermetallics we were able to determine 
thetemperature(T)dependenceof O.Asweshallsee, thespin-wave (sw)approximation 
becomes a very satisfactory technique to deal with SR, allowing the calculation of 
8(T)  and predicting many other interesting features of the phenomenon amenable to 
comparison with experiment. Martynov and Saadrev (1981) earlier applied the sw 
theory to the region above TsR, using the quantum-statistical-mechanics Green function 
method, and obtained a cumbersome implicit equation for the calculation of TsR. which 
was difficult to compare with experiment. However, our approach, w,hich brings in 
substantial modifications of the Holstein-Primakoff (HP) (1940) method, allows an 
explicit calculation of TsR. 

This paper is organized in the following way: In section 2 we justify and discuss 
our model hypothesis and adapt the HP method to deal with systems with competing 
anisotropies undergoing SR transitions. In section 3 we calculate 0 ( T )  explicitly, includ- 
ing T = 0 K. The conditions needed for SR to occur are established. The critical scaling 
of 8 near TSR is made patent, explicitly calculating the exponent p and providing an 
expression for TsR. The low-temperature variation of 8 is obtained, finding a connection 
of O(0) with TsR, Finally, in section 4 we make a comparison of our findings with some 
of the experimental results available, 

2. Spin-wave model for systems with competing magnetic anisotropies; justification and 
discussion 

2. I .  Physical just$cation and introductory remarks 

Our model deals with substitutionally disordered alloys, i.e. RE intermetallics where 
we have two rare-earth ions with opposite-sign Stevens factors cuJ, such as 
(RE:REI-x)2Fe14B and (RE:REI-,)C05, where the RE and RE’ ions occupy random 
positions. These kinds of compounds are really quite complicated magnetic systems, 
both from their large and complex unit cells and also from their magnetic structures (see 
e.g. Kirchmayr and Poldy 1982). with several non-equivalent RE-RE’ and transition- 
metal (TM) sublattices (e.g. six for Fe and two for the RE-RE’ in the case of the 
(RE:RE~ ..,)2Fe,,B compounds, the Fe atoms also carrying different atomic magnetic 
moments (Givord and Li 1985)). The application of the sw approximation to such 
systems by distinguishing the three (RE, RE’ and TM) magnetic sublattices is a really 
formidable problem. To our knowledge the only attempt to deal with sw excitations in 
magnetically ordered king systems with multiple structurally ordered magnetic sub- 
lattices was done by Saenz (1962), but considering only axial anisotropies (no SR 
possible), through the simplifying assumption of introducing equivalent anisotropy 
fields, which is not a fully clear-cut microscopic description. Our problem, where the 
rare-earth sublattice is structurally disordered, is frankly much more complex, in fact 
formidable (Kaneyoshi 1984). and needs some reasonable simplifications if a fully 
microscopic model, such as the sw approximation, is to be used. 

There have so far been two ways to tackle the SR problem. One is the well known 
phenomenological approach, where one necessarily needs to consider higher-order 
anisotropy constants to produce a continuous rotation of the magnetization. This 
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approximation does not distinguish among the different sublattice magnetizations and 
anisotropy constants, assuming a unique magnetocrystalline anisotropy free energy, 

Fk =K,(T)sin* e +  K,(T)sin4 e. 
For collinear ferromagnets the introduction of different K,(T) ,  i = 1, 2, for each sub- 
lattice is clearly useless, and the use of only second-order constants, although competing 
and with different temperature dependences, i.e. KFE(T), K y E ' ( T )  and K y ( T ) ,  
clearly does not produce a temperature-dependent SR angle at all. 

The other, and more powerful, approach is the mean-field crysral-field (MF-CEF) 
approximation (Ibarra eta! 1989a). This description lies between an atomisticone, when 
describing the CEF upon the RE by a Hamiltonian HCEF, and a very simplified mean-field 
one to deal with the exchange interactions. However, in order to produce a continuous 
SR process, HcEF must again include higher-order CEF operators, i.e. 

HcEF = B!O! + BZO; + 8303 
and although the model distinguishes between the two RE species, it treats the weaker 
TM anisotropy within the phenomenological model. The limitation of this approach, 
althoughveryvaluable,isthatit isacomputationalone,fittingthetemperaturevariation 
of e by an adequate choice of the parameters involved, but hardly revealing the detailed 
physical processes involved in the complexity of the SR phenomenon. 

Therefore, the ultimate reason to choose the sw approximation is that, as we shall 
see, it predicts a continuous temperature variation of 8 ,  but, in contrast with the 
phenomenological or MF-CEF models, without invoking higher-order anisotropy or CEF 
terms. This assumption is quite important because, for RE, RE' ions with competing aJ 
factors, the main mechanism for SR to occur must be more the result of this competition 
and less the result of higher-order interactions. But, there is also the important aspect 
of a deeper understanding of the physics involved in the  phenomenon, in termsof the 
many predictions liable to experimental verification, which were briefly mentioned in 
section 1. 

Considering the mentionedcomplexitiesof our RE: RE, -,TM. intermetallics, inorder 
to use the sw approximation we have made the simplification of assuming an average 
magnetic ion, with effective spin S, defined through the experimentally determined 
magnetic moment per unit cell, p = gpBS, the resultant of the coupling among the RE', 
RE and TM moments, i.e. 

P = n [ e u p R E '  * (1 - U ) f i R E  + UfiTM1 

with + for light and - for heavy rare-earth ions respectively and n the number of 
molecules per unit cell; g is the corresponding effective Land6 factor. However, such a 
severe simplification can be well justified to a reasonable extent. The RE'-RE sublattice 
is substitutionally random and it is justified to consider an average magnetic moment 
between fiEt and pRE. Moreover, in our kinds of intermetallics, the strongest exchange 
interaction is between the TM atoms, which is really quite strong according to the large 
Curie temperaturesobserved (-600 K) (Wallace 1973, Buschow 1980, Coeyeral1985). 
Therefore, the exchange between the overall spins S is, within our model, the resulting 
one between the Thl spin contributions to S. Now, the formation of the overall magnetic 
moment is believed to be due to the exchange polarization of the RE and RE' spins by 
theTMones(Campbell1972),givingrise toamagneticmomentquiterigidunder rotation 
(Ibarra er al 1991). On the other hand the I'M anisotropy energy is, in general, less 
relevant compared with the competing RE-RE' ones (Ibarra etal1989a) and can, to some 
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extent, be neglected within our model. Finally, the source of the anisotropy can be 
described in the following way. The RE and RE’ ions are respectively submitted to axial 
and planar CEF, and in this way the ooeralfeffective spin S is submitted to the competing 
CEF but through the intermediary action of the RE and RE’ ionic contributions to S. 

Summarizing, we propose a scenario, for our pseudotemary or pseudobinary inter- 
metallics, of a lattice of unit cells with effective spins s, coupled to one another through 
the strongest TM exchange and submitted to competing second-order CEF, coming from 
the RE(axial)-RE’(planar) sublattice. In this sense, although the magnetic moment 
structuralfluctuation isneglected, themost important one in dealingwith the s~phenom- 
enon, namely thecompetingcharacter ofthe ~~anisotropies,istruly takenintoaccount. 

2.2. Basic Hamiltonian and rotation to a frame hauing the magnetization direction as 
quantization axis 

Therefore, we will assume acrystal-field Hamiltonian, referred to thecrystal axesframe, 
for a lattice of N spins, given by 

where D ,  ((U = a, p) are the respective CEF strength parameters and I the lattice points. 
The definitions of the CEF operators are currently confusing; we will adhere to the ones 
of Buckmaster (1962) and accordingly take extended Stevens operators Or and 0: 
(Rudowiw 1985). The axes frame has z parallel to the crystal c axis (tetragonal, ortho- 
rhombic or hexagonal), x 11 a and y I a, within the basal plane. The Hamiltonian H ,  in 
(l), although strictlyrepresentingan anisotropy within the basal plane, withinour model 
also becomes an anisotropy capable of tiltingS away from the caxis, in competition with 
the axial ~ E F  represented by Ha. Finally, we will express the exchange interaction 
through the Heisenberg Hamiltonian 

1 
He,  = -: J ( I  - m ) S , .  s, 

I ,  01 

where J(I - m) is the effective exchange interaction between the spins. 
The sw approximation naturally assumessmall spin deviations from thequantization 

axis (QA). For a system undergoing SR, the natural QA is the average magnetization (M) 
direction. Therefore, we shall rotate our axes frame by Eulerian angles q and 8, such 
that the new axisz’ 11 M, 0 and t) becoming the polar angles of M. The Hamiltonian H = 
H,, + H a  + H, will be rotated accordingly, although He, indeed remains invariant. 
According to Rudowicz (1985) and Buckmaster et al(1972), 

[@Icf = &in2 e 6:’ - 3 sin2 e 6y + 8(3 cos* e - I)@ 

[6tlcf = tcos(2q)(cos2 e + 1)O 

- ~sin(211,) sin e 6:’ - s i n ( 2 ~ )  cos e 6:’ 

(30) 

(36) 

+ cos(2q) sin(2s)Oy + fcos(2q) sin* e 0.4’ 

where the label cf refers to the crystal frame axes and the primed one to the rotated 
frame. 

The rest of section 2.2 is straightforward. We will first perform the transforma- 
tions, for large spin S (Wallace 1973, Coey eta1 1985), Sf = S - a t a , ,  S: = d(2S)a,, 
S i  = V(2S)a: ,wherea: anda,respectivelyare creationandannihilationspindeviation 
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operators. It is simple to obtain from equations (1)-(3), keeping terms only up to second 
order in a: ,  ai, a rotated Hamiltonian H' = H;,  + HA + H ; ,  with coefficients that are 
in general complex functions of 0 and ly. Transforming H' to the magnon representation 
(Holstein and Primakoff 1940, Keffer 1966), in terms of U :  and a ,  operators of wave- 
vector k ,  we obtain the Hamiltonian 

(4) + t +  H I  = H ,  + 2 ( A  ka:ak + iBkaka-k f $5, ak a-k) + (PO% + p i a l )  
k 

where 

H, = -NDa(S/2)(S/2 - 1)(3 cos2 B - 1) - NDP(S/2)(S/2 - 1) cos(2y) sinZ 0 

and where the functions A k  and Bk are given by 

( 5 )  

A ,  = 

5,  = -(6/4)[i3D,Ssin2 B + 4D,Scos(2q)(cosz B + 1) + iDPSsin(2y) cos e]  

with an unperturbed magnon energy, for Bravais lattices of effective spins S (Kittel 
1967), 

+ $D,S(3 cosz 6 - 1) + gDp S cos(2y) sin2 0 (64 

(6b) 

The summation in (7) is restricted to the z nearest neighbours at distances 1 - m = 6 of 
the probe ion, the exchange being assumed uniform, .I. There also appear in H' the 
important k = 0 terms a.  and a $ ,  with coefficient 

pa = v'R[~v%~/~D, sin(20) - $ v W / Z D ,  cos(2y) sin(20) 

- ~VW'D,  sin(2q) sin(20)l. (8) 

2.3. Hamiltonian diagonalization and consequences 

The second term of Hamiltonian (4) has the well known HP form and can be diagonalized 
using the usual HP diagonalization transformations. However, the linear term in a $ ,  a. 
is new and has to be diagonalized using a novel transformation (Cullen 1987), in its 
present form, 

= + c k 6 k . 0  and cc (9) 

where the Fourier transform co of ckak,,  represents frozen-in uniform spin deviations. 
The diagonalization of Hamiltonian (4) by (9) yields 

CO = - ( p $ A o  - ~050')/(Az0 - jB012) and cc. (10) 

Now, the new diagonalized Hamiltonian H" contains a k # 0 term identical to (4), but 
with a:,  a ,  substituted by the a:, ak operators, plus a new k = 0 term of the form 

H i  = H , + A , I c ~ ~ ~ + ~ B ~ c ~ + ~ B $ ( c ~ ) ~ + P o c o + P $ c ~  (11) 

which is just a c-number. Hamiltonian H" again has the standard HP form (Keffer 
1966) and can be diagonalized using the two-stage HP diagonalization transformations 
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(Holstein and Primakoff 1940, Keffer 1966). The fully diagonalized Hamiltonian 
becomes, in the final form, 

H “ = H ~ + ~ [ ( B t B h + ~ ) E h - ~ h ]  (12) 
k 

with theperlurbed, by the CEF, magnon energy 
P h = ( A : - I B X 1 2 ) ’ n  

which indeed includes the k = 0 CEF magnon energy gap, immediately obtained from 
equations (6a, b) and (13). 

Before continuing we will assume that SR takes place within the ( a n )  plane, i.e. 
T$ = 0 in equations (5). (6a, b) and (S), which is a simplifying real assumption in 
many intermetallic systems (see references of section 1). In such a situation H i  = 
Ho + copo.  Also T$ = 0 is the condition for minimum anisotropy energy. for D, > 0, 
within the basal plane ifwe treat Hamiltonian H” within the classical limit, where simply 

It is now worthwhile to notice that Hamiltonian (12) contains three kinds of spin 
H “  = HO. 

fluctuations: zero-point quantum fluctuations. represented by the term 

H ,  = x$(Ek - A k )  =1c [ ( A :  - /BX1*)l” - A k ]  (14) 
X X 

thermally excited magnons, represented by 

2 8: 8 X g h  
k 

and, most importantly, a term capo and CC dealing with the uniform (k = 0) spin canting 
from the c axis, which constitutes our main pursuit. 

3. Spin reorientation angle 

The spontaneouss~ angle @is a staticequilibrium quantity, obtained by minimization of 
thesystemfreeenergyF= -(l/fi) In Z,with/3 -l/k,T,Zbeingthepartitionfunction, 
obtained from (14) as Z = Tr exp(-BH”); thus 

withFo= H i  + H I .  Again,in(15)therearethreecontributionstothefreeenergy;the 
static ground-state energy H ;  = Ha + capo - Ho - p $ / ( A o  + B o ) ;  the zero-point 
quantum fluctuation energy H , ;  and the thermally excited magnon free energy F,(T).  
There are two temperature regions of interest, inorder to calculate 0, as now discussed. 

3.1. Zero-point SR angle 
At 0 K, the spontaneous SR angle e(0) is obtained by minimization against 0 of the zero- 
point free energy fo (per spin), 
fa = Fo/N = -(S/Z)(S/Z - 1)[D, sin2 0 + D,(3cos2 8 - l)] + H , / N  + copo.  (16) 
It is now essential to notice that, in the pure classical limit, the magnetocrystalline 
anisotropy free energy becomes 

and therefore af 8/80 = 0 yields the solution sin 8 cos 8 = 0, which has only two equi- 
libriumstates, 0 = O(for D,/D, < 3)and 0 = n/2(forDp/Da > 3), with nointermediate 

f 8 = -(S/z)(S/z - 1)[D, sin2 e + D,(3 cosz e - I)] (17) 
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minimum for the SR angle. Even considering structural fluctuations, as discussed in 
section 2.1, by introducing different spins in the classical anisotropy free energy (17), 
i.e. S. and S, for the RE and RE’ sublattices respectively, the result would be the same. 
Again, this means that classically second-order anisotropy terms alone are unable to 
produce a continuous SR angle B. Therefore, the spin fluctuation terms copo + H , / N  in 
equation (16) are, in principle, responsible for the formation of a 0 K finite SR angle. 
Calling, for convenience, 

we will now evaluate the term fl = H I / N ,  given by equation (14). We will assume that 
at the temperatures considered, well below the Curie point Tc (TSR are at least of the 
order of Tc/2 for the intermetallics mentioned in section 1 (Ibarra eta1 1989a, Marquina 
1990, Algarabel et al1988, Coey et a1 1985, Wallace 1973)). only low-energy magnons 
wil be excited. Then a series expansion of (7) for a simple cubic (sc) lattice of effective 
spins S (which is the simple way in which we have modelled the complex tetragonal or 
hexagonal lattices of our intermetallics) gives, as a first-order approximation, for the 
unperturbed magnon energy, .zk = Ak’, with A = USuZ being the sw stiffness constant 
(a is an average lattice constant). Assuming that the anisotropy term Ek = Eo (see (6b)) 
is small compared with Ak (i.e. in the large exchange limit, which is the situation for the 
present systems), we can write 

which can be evaluated in the continuous-k integral approximation, i.e. 

where k, = (?n/n,  0,O) and its symmetric reciprocal lattice points are the limits of the 
average cubic Brillouin zone (Bz) boundary; U, is the lattice volume per spin. The exact 
result forfl is quite cumbersone to handle, i.e. 

f l  = - ( 3 ~ . S ~ / 1 6 ~ n ~ ) ( ~ ~ / A ) { k ,  

- (3S/2)lD ( ql/A)‘P tan-‘ [kC/(3S/2) (tk /A)]”]}. (20) 
However, it can be shown (del Moral er nl 1992) that f = ((2/3S)(A/WI))’” is the 
magnetic correlation length characterizing small-angle neutron scattering (SANS), which 
is rather large, of the order of several hundred ingstroms, as determined in the 
(Er,Nd,-,)zFe,,B compounds (del Moral er al1991,1992). Therefore, k,f is large and 
flcan be simplified (see the last term in equation (21) below). Therefore, from equations 
(16), (17) and (20), the zero-point free energy becomes 

fa = -(~/z)(s/z - U Y ~  + ~ D J ~ / ’ ( ~ D ,  - D,XW:/PV~ + ( W 2 M I I  

- ( ~ U , S ~ / ~ ~ * A ~ ) ( I & / A ) ( ~ ~  - z/2E) (21) 
with 4, = dyl/dO. Minimization of fo =f; i- copo t f, against 0 shows that afl/aO, 
the torque on the effective magnetic moment p, coming from the k # 0 spin quantum 
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fluctuations, becomes completely negligible compared with the other two torques com- 
ing from the classical and uniform k = 0 spin fluctuations. For large S, the resulting 
equation from the minimization is 

2 1 (3 + 6 / 2 ) &  
" [ 3 t h ( 3  + d6/2)q1 + d 6 ( A  - 1) (z" - (3 + d6/2)q1 + d 6 ( A  - 1) 

where we have introduced the important parameter within our model, A = ;(D,/D,). 
Notice that V I ( @ =  -f;/[(S/2)(S/2- l)]. A first solution of (22) is y1 = O  (or 
Jf;/a8 = 0), which is the classical one already discussed. But, most importantly, there 
is a new solution for 8(0), cast in the form 

A* sin4 O - B* sin2 O + C* = 0 (23) 
where the coefficients are functions of the parameter A alone, which means that O(0) is 
controlled only by the ratio Dp/D,,  independently of the individual strengths of the CEF 
and spin S. Physically, these coefficients respond to the effect of the zero-point quantum 
spin fluctuations in the formation of O(O), and explicitly are 

A*(A) = 32(3 + d / 2 ) ( 3  + A) + (3 + V%/2)'(3 + A)2'= 32c2 + c; 
~~ 

B*(A) = 32(12 + 2 4 A )  + 12(3 + V%/2)(3 + A)(A + aF)-32z~+ c l  (24) 
C*(A) = 32(6 + V%A) + 4(3 + d / 2 ) ( d A  + 3 - 6 / 2 )  + 6(A - 1)2 = 3 2 ~ 3  + c;. 
The splitting into ci and c; terms has no physical meaning, only being done for con- 
venience when evaluating later the evolution of O at finite temperatures. The new non- 
classical solution for the zero-point SR angle then becomes 

sin2 O(0) = (B*/ZA*)[l 2 (1 - 4A*C*/B*2)L/2]. (25) 
The important conclusion reached is that a stable minimum with 0 < O(0) < a/2, given 
by equation (25). is possible besides the two classical solutions 0 = 0 and 8 = n/2, and, 
most importantly, assuming only second-order competing CEF interactions. Essentially 
responsible is the k = 0 frozen-in spin fluctuation, represented by c,, (see equations (9) 
and (10)). Quantum fluctuations with k # 0 seem to have little effect on the canting, 
althoughprobablyreducing themarginalvalueofsin2 O(0) obtained forA = 0, inasmuch 
asfl C 0 (see (23)) further reduces the free energy. 

It is now quite important to determine under which conditions 0 K spin canting can 
occur. In section 2.3 we assumed that the SR was in plane (c ,  U ) ,  i.e for v$ = 0. For the 
ground state this situation corresponds, within the classical approximation, to D, > 0. 
Now, it is easily shown that Pfo/a02 > 0 (i.e. minimum forfo) is fulfilled, and SR at 0 K 
is possible for the situations summarized in table 1. The A axis was explored in the wide 
range -20 S A G 20, and the calculatedvariation,fromequation (=),of sin20(0) in the 
intervalswhereasolutionexistsisshown in figures l(a)-(c). HerelAl = 3 isthe threshold 
value, within the classical approximation, for the only allowed A-driven first-order SR 
transition from 0 = 0 to O = a/2 (see figure I ( a ) ) .  Notice the existence of such a first- 
order transition also for the non-classical solution (figures I(b) and (c)). Besides, 
there appears a gap between A = -2.45 and +2.87, where 0 K uniform spin canting is 
forbidden. 
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o.: 

- 
s 0 0.6 

Figure 1. Thecalculated dependence of the 0 K values 
of sin% versus the parameter ratio A = -(Dn/D,) 
(see equation (25)). for the different situations con- 
sidered in table 1: (a) cases I and I1 (the broken line i is the classical approximation solution); (b)  case 11; 

2 8  1 ,.I 1.1 3.6 1.1 1 

*I 

-2 

'' (c) case 111. 

Table 1. Situations where aspin reorientation process at 0 K happens within the (c. a )  plane 
(i.e. for basal plane crystal field (CEF) parameter D, > 0). in terms of the sign of D, (axial 
CEF parameter) and of the ratio A = - (Dp /Da) ,  with indication of the sign of the square 
root. *[I - (4A'C*)/B*2]'"inequation (25),givingsinz8 (0). 

Sign of the Possibility 
Situation D, A square root of SR 

I + A < - 3  - Yes 
n - A > - 3  - Yes 
111 + A > - 3  + Yes 
IV - A < - 3  + No 

3.2. Variation of the SR angle with temperature, SR temperature and critical behaviour 

At finite temperatures the minimization of the free energy F given by (15) immediately 
gives rise to 

which again possesses the classical solution dl = 0. We will now consider two extreme 
relevant temperature limits for the resolution of equation (26): 
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3.2.1. High temperatures lT 6 TsR, and criticalscaling. For high enough temperatures, 
i.e. /3tk< 1, and in the large exchange limit, i.e. when Ex 4 A*, equation (26) becomes 

where the summation can again be evaluatedin the continuous-kintegral approximation 
(see equation (19)). Then for kcE % 1, from (27), an equation identical to the OK one 
(22) results, removing the factor GI  and adding to the left-hand side a term of the form 

Therefore the resulting equation is the same as (23). but for substituting the 0 K coef- 
ficientsc;(O) in (24) byc,'(T) = c:(O)(l - mT), with 

CY = ( 6 / Y s ) ( ~ , k ! )  (kB/Ak:) ( 6 ~ / S ) ( A k z / k ~ ) - '  (28) 

where U, = a3 for an sc lattice. Physically, 01-I roughly represents the temperature 
required to excite the highest-energy, &(kc) = A k t ,  magnons. Notice also that ruT= 
6z(kBT/Akt)  represents the importance of the available lattice thermal energy com- 
pared with &(kc), and in this way aalone determines the temperature dependence of the 
SR angle, In fact, in the same way as equation (23) was derived from (22). it is now 
possible to deduce from the T f 0 version of (23) the temperature dependence of 8,  in 
the high-temperature limit (i.e. forPi(k,) Q l), i.e. 

(29) 
4(A* - aciT)(C* - 01<iT1)"'] 

. [ 1 -  (1 - (E* - 01c: T)' 
B* - ac[T 

2(A* - T )  
sinZt7(T) = 

a result that constitutes another goal of our model. 

small 8, the result 
For temperatures close to TsR, a number of series expansions within (29) give, for 

0 =A-t i i z  (30) 

where I is the reduced temperature, t = (TsR - T)/TsR, and the amplitude A- = 
(C*/B*)Ip, Besides, the SR temperature TSR becomes 

T ~ R  (l/ru)A*C"/(C*ci - A * c ; ) .  (31) 
Some comments about these two important results are worthwhile. Equation (30) 

shows that 0 suffers critical fluctuations near TsR, as it should do, and scales with a 
critical exponent /3 = 1/2. Therefore the sw approximation gives quantum-mechanical 
microscopicsupport to the phenomenological MF-Ginzburg-Landau theory for SR tran- 
sitions (del Moral 1987). It is quite revealing to notice the influence of the exchange 
strength .I, through 01, on TSR, and therefore the prediction of a proportionality between 
TsR and the Curie temperature Tc, a fact actually observed in the (Er,Dy,-,)2Fe,,B 
intermetallics (Ibarra et a1 1989a). The variation of the scaled SR temperature, ET,,, 
with A, for the same intervals considered in figures l(a)-(c), are respectively shown in 
figures 2(a)-(c). 

3.2.2. Low-temperanire T3" Bloch law. At temperatures near to OK,  we have 
to compute fully the second term in (26). Now, in the large exchange limit, 
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Figure 2. The calculated dependence of the scaled SR 
transition temperature cTsR with the ratio A = 
-(DAD,), behheen the planarandawialOfstrength 
parameters (see meaning of (Y in equation (35) and 
text), for the same situations considered in figures 
l(ub(c), respectively. 

( G B k  - 3Ak)/2Ak = -3/2 and gk = A k  = Ak2 (i.e. the CEF magnon gap can be 
neglected) and therefore we obtain from (26) 

At low enough temperatures Ak: B kBT and therefore the upper limit of the integral 
can be taken as m; then, from (32) we again obtain an equation identical to (22) but with 
the additional temperature-dependent term (~K/S) (u, lS~?)(k~T/A)~fi  on the left-hand 
side, with K = r(3/2)5(3/2; 1 ) .  Then, the equation giving sin20(T) is again identical to 
(29) but with c; (0) now substituted by 

cj(T) =cj(O)(l - n ‘ T 3 9  

and where 
a’ = ( 3 ~ / 2 n ” ~ S ) ( k ~ / A k Z , ) ’ ~ .  (324  

A transformation entirely similar to the one performed with (29), taking into account 
(31), gives 

sin20(T) = (C* /B*) [ l  - ( o r ‘ / c u ~ ~ ~ ) ~ ~ n ]  (33) 
which indeed constitutes the equivalent to the magnetization T’12 Bloch law for the 
order parameter O(T),  a result that shows the relevance of spin-wave excitations at low 
temperatures to explain properly the O angle reduction. In other words, the classical 
phenomenological approach based on the free energy K l ( T )  sin2@ + K2(T) sin4@ is 
unable toconclude withsuchaBloch-likelaw, ashappenswith themean-fieldtheorywith 
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respect to the magnetization reduction. From (33) it is clear that only for temperatures 
T s ( ( Y T ~ ~ / ( Y ’ ) ~ / ~  is the Bloch law fulfilled. 

For T = 0 K, from (31) and (33), and in the large exchange limit, we obtain the 
relation 

This proportionality was to be expected, because it represents the overall overcoming 
of the 0 K anisotropy energy by the thermal critical fluctuations at TSR. But, the use- 
fulness of equation (34) is that it provides the effective 0 K anisotropy constant (per ion 
and in kelvin) 

K,(O) = [-eci(A)/B*(A)]-’ (35) 
which depends on A, but also increases with the unperturbed magnon energy, Akt .  In 
particular, O(0) is expected to decrease with the Curie temperature, Tc (see section 4), 
as is actually observed in the (Er,Dy,-J2Fe,,B series (Ibarraef al1989a). 

4. Comparison with available experimental results on SR transitions in hard RE inter- 
metallics; diseussion and general conclusion 

Although we should stress strongly that the present work is basically intended as a 
theoretical one, which aims to show how SR processes can be explained as due to spin- 
wave fluctuations, being the result of competing axial-planar second-order CEF alone, a 
comparison of the main findings achieved with available experimental results is indeed 
highly desirable, and in this sense some qualitative verifications of the model have 
already been pointed out in section 3.2. Unfortunately the number of experimental 
results on SR processes in rare-earth intermetallics in scarce and incomplete (see ref- 
erences at the beginning of the paper and references therein), which makes such a 
comparison necessarily limited, and therefore more experimental work isclearly needed 
in the future in order to check the present model further. 

The first physically relevant result obtained is the prediction of a T’P Bloch law for 
the variation of sin% at low temperatures (equation (33)), which provides the ratio 

((Y/cY‘)’ = ( 4 z 3 / ~ ) ( A k : / k s )  

i.e. precisely the magnon energy &(kc), at the average cubic BZ boundary. Therefore, in 
figures 3(a) and (b) we have plotted sin20(T) against T3n for some intermetallics 
where we possess enough and precise e(?‘) data points at low temperatures, a difficult 
measurement in itself (del Moral ef a1 1988, Ibarra ef al1988a. Joven el a1 1990). The 
plots are clearly linear at low enough temperatures, indicating how the SR process is 
really controlled by sw excitations. The values of &(kc) so obtained are collected in table 
2. Inelastic neutron scattering values determined for &(kc) would be highly valuable for 
comparison, but such information is, to our knowledge, lacking. 

Another direct test of the present model is through the relation (34) between TSR 
and sin28(0). In figure 4, we have plotted the measured TSR vs sin20(0) values, for the 
different series of pseudobinary and pseudotemary hard intermetallics considered here; 
theplotsareclearlylinearaspredicted. Notice that equation (34) agrees withexperiment 
even for 8(0) = z/2, when the crossing from axial to planar structures is known to be 
through two transitions, one from axial to conical (at TSR) and the other from conical to 
planar (at T ~ R )  (see e.g. Ibarra etnZ1989a, Moze eta1 1990a). However. in this case the 
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Figure 3. Plots of [sin'e(O) - sin2e(T)]/sin%(0) against T'" (Bloch-like law) for: (a) 
(€rxREI -J2Fe,,B (RE = Nd, Ho, Dy) scries; (b) Pr,Nd, .,CO5 series. From the slopes of the 
straight lines, the magnon energiese(k,) (seevaluesin tableZ), at the averagecubic Brillouin 
mne boundary points (nla, 0,O) and equivalent, are determined (see equation (33) and 
section 4 for details). 

Table 2. The magnon energies E(k.), at the average cubic Brillouin zone boundary 
(./a. 0,O) and equivalent points, for some pseudobinary and pseudoternary hard inter- 
metallicmmpounds. asobtainedfrom theslopesofthestraight linesoffig~es3(a)and(b), 
and the use of equation (33). Also quoted are the second-order effective anisotropy constants 
at 0 K, K,(O), for each series. as obtained from the slopes of the straight lines of figure 4 
(experiment). and the calculated values from equation (35) (theory) (see text for details). 

K,(O) (K/unitcel l )  

System x (at.%) (meV) Exp. Theor. 
Composition E (k) 

- Pr,Nd,.,Co, 0.5 55 96 
0.6 267 

( E ~ D Y ~ - , ) ~ F ~ , ~  0.7 31 232 253 

(Er,Nd,.,),Fe,5 0.4 9 250 239 

(Er,Ho,J,Fe,,B 0.4 16 276 242 

agreement is only for the lowest-concentration ( x )  compounds suffering the double 
transition. The values of the effective anisotropy constant K,(O), obtained from the 
slopesofthestraight linesinfigure4,arequotedin table2,foreachseriesofcompounds. 
A good test of the model is through the comparison of the experimental K,(O) values 
with the theoretical ones provided by equation (35). Clearly the value of the effective 
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Figure 4. Plots of the measured sin'O(0). at 0 K, versus the measured SR transition tem- 
peratures TSR, for different series of RE pseudobinary and pseudotemary hard intermetallics. 
The slopes of the straight lines provide the values of the 0 K anisotropy constants quoted in 
table 2 under 'experiment'. The ermr bars correspond to the maximum precision achieved 
in the cone angle measurements. 

spinsisneeded; adeteminationof Sfrom magnetization data, ouronlyavailable results 
(Coey et a1 1985, Wallace 1973), is not possible because S and the Land6 factor g are 
combined in the magnetic moment per unit cell, p = gpBS. However, we can make use 
of the MF theory, where the exchange constant is given by J = 3kBTc/8zS(S + l ) ,  and 
take for the sw stiffness constant, A = $JSa2. Then for large S, S(S + 1) = S', and for an 
sc lattice, we obtain from equation (28) that cu = 61.1/Tc (Tc values can be found for 
the (Er,REI-,)2Fe14B and Pr,Nd,_,Co, compounds in Coey et a1 (1985) and Wallace 
(1973) respectively). 

The determination of A, needed to evaluate the function c;(A)/B*(A), which 
appears in (35). was made from the experimental values of nTsR (see values of T,, in 
references mentioned at the beginning of section 1) and the use of graphs in figures 2(a)- 
(c). This method of determination of A was preferred to the alternative one based on 
the 0(0) experimental values and the use of the graphs in figures l(a)-(c), owing to the 
large uncertainty in the O(0) values, of =+5" (del Moral et a1 1989). The calculated 
values of K,(O)  are shown in table 2 for the (Er,=, -,)'Fe,,B series of compounds. the 
agreement with experiment being quite good, if one considers all the simplifications 
made in the model. In the case of the pseudobinaries (Pr,Nd, -,)CO,, there was no such 
agreement. The reason could be found in the fact that the PSt and Nd3+ ions have cu, 
coefficients of the same sign and then the competing anisotropies are between the RE 
and CO sublattices. feromagnetically coupled (Algarabel er a1 1988, Ibarra et a1 1991, 
Wallace 1973). Whether the interaction of the CO atoms with the CEF can be treated 
within the single-ion scheme is doubtful (Ibarra et a1 1989a, 1991), and could make our 
model only applicable in a broad sense, considering that there are other features where 
it behaves correctly. 

Now, a comparison with directly measured values of K l ( 0 )  is unfortunately not 
possible, owing to the lack of measurements at 4.2 K (the experimental data go down to 
77 K only) and besides K, appears in linear combinations with K, and K 3 ,  casting the 
measured equivalent axial and planar anisotropy fields (Algarabel et at 1989b, Ibarra et 
a1 1989a, hlarusi et a1 1990). 

A last comparison made with experiment is regarding the predicted critical scaling 
of 0 near TsR (equation (30)). Such scaling is well fulfilled by the present series of 
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Table 3. Critical exponent ,6 for the order parameter SR angle B for some series of 
pseudobinary and pseudoternary magnetically hard rare-earth intermetallics. 

Composition 
System x (at.%) B References 

Pr,Nd, 0.80 
0.60 
0.50 
0.40 

(Er,Dy,.,)2Fe,4B 0.70 
0.80 
0.90 

(Er,Nd,-,)2Fe,4B 0.40 

(Er,Hol-J2FeFel4B 0.40 

0.60 i 0.10 More etal(1990a)' 
0.50 i 0.10 
0.70 i 0.10 
0.50 i 0.10 

0.60 ? 0.20 Ibarraefnl(l989a) 
0.50 * 0.20 del Moral eta/ (1989) 
0.80 i 0.20 Ibarra and del Moral (1990) 

0.8Oi 0.20 Ibarraetd(1988a) 
del Moral el af (1989) 

0.70 i 0.15 Marquinaeful(l989) 

a Thethermaldependencesof thesnangles, fromwhere theBexponentswereobtained,are 
quoted in this reference and the ones below. 

intermetallics, actually revealing the existence of critical fluctuations of the 8 order 
parameter. In table 3, we have collected the values of the determined critical exponent 
p .  The measured values are, in general, higher than the predicted one of 0.5, but much 
higher than the more reliable, in principle, renormalization group (RG) calculation 
value, p = 0.367. The reason why our sw (or the MF) approximation 6 value is closer to 
the experiment than the RG one is not yet well understood, and probably needs further 
theoretical work. Sufficeit tosay that thedeterminationof 8, made through the measure- 
ment of the magnetization perpendicular to the applied field (Joven eta1 1990), makes 
it quite difficult very near to TSR, where the 8 values are indeed quite small. This could 
introduce large systematic errors in the p values. On the other hand, although the sw 
approximation is a low-temperature one, we are far from Tc and this circumstance could 
explain the success in the prediction of a critical scaling for 0 at T =z TSR. 

As a general conclusion, our present model only claims to open some avenues to 
deal with the mechanisms underlying the complex and not yet well understood spin 
reorientation phenomenon in ferromagnetic (or ferrimagnetic) systems formed by two 
RE ionic species submitted to second-order competing crystal fields. Besides, more 
experimental work is clearly needed to test fully our model predictions and main 
hypothesismadeofassuminganaveragespinperunitcellin RE:RE,_,TM, intermetallics; 
and, most importantly, whether the quantum spin fluctuations are fully responsible for 
the 0 K frozen-in magnetization canting. 
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